Linear Algebra Examples

Find Reduced Row Echelon Form [[-6,7],[2,6],[-4,1]]
[-6726-41]672641
Step 1
Multiply each element of R1R1 by -1616 to make the entry at 1,11,1 a 11.
Tap for more steps...
Step 1.1
Multiply each element of R1R1 by -1616 to make the entry at 1,11,1 a 11.
[-16-6-16726-41]⎢ ⎢1661672641⎥ ⎥
Step 1.2
Simplify R1R1.
[1-7626-41]⎢ ⎢1762641⎥ ⎥
[1-7626-41]⎢ ⎢1762641⎥ ⎥
Step 2
Perform the row operation R2=R2-2R1R2=R22R1 to make the entry at 2,12,1 a 00.
Tap for more steps...
Step 2.1
Perform the row operation R2=R2-2R1R2=R22R1 to make the entry at 2,12,1 a 00.
[1-762-216-2(-76)-41]⎢ ⎢ ⎢17622162(76)41⎥ ⎥ ⎥
Step 2.2
Simplify R2R2.
[1-760253-41]⎢ ⎢176025341⎥ ⎥
[1-760253-41]⎢ ⎢176025341⎥ ⎥
Step 3
Perform the row operation R3=R3+4R1R3=R3+4R1 to make the entry at 3,13,1 a 00.
Tap for more steps...
Step 3.1
Perform the row operation R3=R3+4R1R3=R3+4R1 to make the entry at 3,13,1 a 00.
[1-760253-4+411+4(-76)]⎢ ⎢ ⎢ ⎢17602534+411+4(76)⎥ ⎥ ⎥ ⎥
Step 3.2
Simplify R3R3.
[1-7602530-113]⎢ ⎢ ⎢17602530113⎥ ⎥ ⎥
[1-7602530-113]⎢ ⎢ ⎢17602530113⎥ ⎥ ⎥
Step 4
Multiply each element of R2R2 by 325325 to make the entry at 2,22,2 a 11.
Tap for more steps...
Step 4.1
Multiply each element of R2R2 by 325325 to make the entry at 2,22,2 a 11.
[1-7632503252530-113]⎢ ⎢ ⎢17632503252530113⎥ ⎥ ⎥
Step 4.2
Simplify R2R2.
[1-76010-113]⎢ ⎢176010113⎥ ⎥
[1-76010-113]⎢ ⎢176010113⎥ ⎥
Step 5
Perform the row operation R3=R3+113R2R3=R3+113R2 to make the entry at 3,23,2 a 00.
Tap for more steps...
Step 5.1
Perform the row operation R3=R3+113R2R3=R3+113R2 to make the entry at 3,23,2 a 00.
[1-76010+1130-113+1131]⎢ ⎢176010+1130113+1131⎥ ⎥
Step 5.2
Simplify R3R3.
[1-760100]⎢ ⎢1760100⎥ ⎥
[1-760100]⎢ ⎢1760100⎥ ⎥
Step 6
Perform the row operation R1=R1+76R2R1=R1+76R2 to make the entry at 1,21,2 a 00.
Tap for more steps...
Step 6.1
Perform the row operation R1=R1+76R2R1=R1+76R2 to make the entry at 1,21,2 a 00.
[1+760-76+7610100]⎢ ⎢1+76076+7610100⎥ ⎥
Step 6.2
Simplify R1.
[100100]
[100100]
Enter a problem...
 [x2  12  π  xdx ]